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Abstract

Dams are a key and costly investment in agricultural productivity. Despite controversies

over environmental degradation and community displacement, dams continue to be built

with the expectation that they will generate benefits for society. This paper explores

an understudied link between irrigation dams and children’s health in India by utiliz-

ing two recent rounds of the National Family Health Survey, a global dam database,

high-resolution river basin data, and various remote-sensed products. By employing an

instrumental variable strategy that leverages river gradients to address endogeneity con-

cerns, I find that irrigation dams increase neonatal mortality in the river basins where

they are constructed by approximately 0.26 percentage points (7.6% of sample mean),

while no changes are observed in downstream basins. I show that these results can

be linked to dam-induced increases in agrichemical exposure, highlighting the need to

properly evaluate the unintended consequences of large investments intended to increase

agricultural productivity and household resilience to climate shocks.
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“Bhakra-Nangal is not a work of this moment only, because the work which we are doing
at present is not only for our own times but for coming generations and future times.”

- Jawaharlal Nehru, the first prime minister of independent India,
on the construction of the Bhakra dam.

1 Introduction

Investments in agricultural technologies can be crucial for economic development and

growth, but they can also impose significant social and environmental costs. India ex-

emplifies this trade-off, where the investments and infrastructure introduced during the

Green Revolution significantly increased agricultural output, reduced poverty levels, im-

proved nutrition and consumption, and enhanced economic productivity (Gollin, Hansen,

and Wingender 2021; Bharadwaj et al. 2020; von der Goltz et al. 2020). However, these

agricultural advancements also introduced notable short-term and long-term costs, low-

ering environmental quality (Brainerd and Menon 2014), increasing health risks (Sekhri

and Shastry 2023), and possibly exacerbating social inequality (Dhanagare 1987). Thor-

ough evaluations of these costs are necessary to better assess the long-term returns of

agricultural investments on society.

Among the various agricultural investments, irrigation dams stand out as some of the most

expensive, grandiose, and contentious projects. These dams are designed to improve water

resource infrastructure for farmers and to increase agricultural productivity, while also

making yields more resilient to rainfall shocks (Duflo and Pande 2007; Strobl and Strobl

2011; Hansen, Libecap, and Lowe 2009). Yet, debate persists over whether they truly

enhance community welfare as concerns about environmental degradation and community

displacement call into question the benefits these irrigation dams may provide (Dillon and

Fishman 2019; WCD 2001). These concerns are particularly relevant in India, which has

constructed over 4,000 irrigation dams, far exceeding the total number built by its South

and Southeast Asian neighbors.1 Despite the scale of dam construction, there is limited

empirical research on the health impacts of irrigation dams, particularly on vulnerable

populations, such as children.

This paper examines the spatially varying impacts of irrigation dams on children’s mor-

tality incidences in India from 1990 to 2014 and explores the potential channels that

explain these effects. A focus on spatial effects is necessary, as irrigation dams typically

have different impacts on agricultural and economic outcomes in the areas where they

are constructed compared to downstream areas. To analyze this relationship, I com-

1Figure A1 illustrates the number of dams constructed in India and other countries in South and Southeast
Asia. By 2014, which is the latest year in the dam database, India had about 10 times more dams than
all the combined dams in other South and Southeast Asian countries.
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bine data from multiple sources. I use two rounds of the National Family Health Survey

(NFHS), which is nationally representative and geo-referenced. I also incorporate data on

dams from the Global Dam Database, which provides detailed information on individual

dams and their completion dates. To identify spatial spillover effects, I use digitally con-

structed river basin boundaries that link each river basin to its respective upstream and

downstream basins. Additionally, I draw on a district-level agricultural panel survey, a

national water quality monitoring database, and various remote-sensed measures of land

cover, malaria incidences, agricultural productivity, and climatic indicators to examine

the channels through which irrigation dams may influence children’s health.

Since dam construction can be driven by endogenous factors, my primary identification

strategy relies on the use of instrumental variables and fixed effects. This approach

is motivated by Duflo and Pande 2007, who demonstrate that high river gradients are

more suitable for irrigation dams as opposed to flatter or steeper gradients. Additionally,

because my sample includes time-varying trends in child health outcomes, the empirical

design adopts a shift-share-like method that accounts for potential exogenous variation

in dam construction over time and across states with varying shares of dams.

I find that irrigation dams increase early childhood mortality – a key indicator of vulnera-

bility in children’s growing environment – in the river basins where they are constructed.

The most significant impact is observed for neonatal mortality (the probability that a

child dies before reaching 1 month), which increases by 0.26 percentage points, or approx-

imately 7.6% of the sample mean. This effect is less identifiable when using district-level

boundaries, which are too large to contain logical treatment effect areas of these irriga-

tion dams, emphasizing the need for incorporating finer spatial units to identify health

impacts. Post-neonatal and child mortality, which reflect health risks to older children,

do not change, suggesting that the impacts of irrigation dams on children may be limited

to in-utero or immediate post-pregnancy shocks. Notably, irrigation dams upstream do

not lead to any changes in mortality, suggesting that the health costs of irrigation dams

constructed between 1990 and 2014 are typically localized.

To examine the underlying mechanisms, I begin by analyzing how irrigation dams affect

land cover composition in river basins. I find that irrigation dams increase cropland areas

in both local and downstream river basins by approximately 5% and 8% respectively. This

expansion in cropland comes at the expense of a reduction in forested areas and a slight

decrease in urban spaces. I also find that irrigation dams increase malaria incidences,

which are strongly linked to irrigation infrastructure (Mary et al. 2023; Keiser et al. 2005)

and deforestation (Berazneva and Byker 2017), in both local (0.7 percentage points) and

downstream (1.0 percentage points) river basins. However, since irrigation affects these

variables in both local and downstream river basins, these changes do not fully explain

the localized child health risks observed earlier.
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When I assess changes in agricultural productivity using a remote-sensed measure (NDVI),

I find that irrigation dams increase only dry season productivity for local river basins by

25%. The dams do not change local wet season productivity or overall productivity

in downstream river basins. These results are consistent when using district-level yield

data. Interestingly, increases in agricultural productivity are often associated with im-

proved child health outcomes, making the observed rise in neonatal mortality in river

basins with irrigation dams puzzling. However, I find that this productivity increase is

strongly linked to greater chemical fertilizers. Irrigation dams lead to increases in nitro-

gen and phosphorus – two of the most commonly used components of chemical fertilizers

in India – by approximately 1,350 and 550 tons respectively. I also find that river basins

with irrigation dams are more likely to have unsafe levels of nitrates in their rivers and

groundwater, suggesting that high agrichemical exposure induced by dams could explain

the rise in neonatal mortality rates.

To further demonstrate that dam-induced increases in chemical fertilizer use can elevate

health risks to children, I exploit variations in the timing of childbirth relative to the

district’s sowing period (when fertilizer application is highest). High in-utero exposure,

particularly during the first trimester, is strongly associated with increased risks of birth

defects, low birth weight, and mortality (Manassaram, Backer, and Moll 2006; Brender

and Weyer 2016).2 Based on this, I analyze whether children whose first trimester coin-

cides with the district’s sowing period have higher neonatal mortality rates and whether

this effect is more pronounced in districts with greater dam intensity.3 I find that children

whose first trimester coincides with the dry season sowing period have higher neonatal

mortality rates only in districts with higher irrigation dam intensities. This provides ad-

ditional evidence that dam-induced increases in agrichemical exposure impose significant

health costs on children in India.

This paper contributes to the literature on the health consequences of large irrigation

infrastructures in three significant ways. First, to the best of my knowledge, it is the first

study to examine the impacts of irrigation dams on children’s health outcomes using na-

tionally representative samples from India. Previous studies have linked dam construction

to child mortality primarily in the African context (Mettetal 2019; Chakravarty 2011),

where women’s involvement in agriculture and concerns about agrichemical exposure are

lower compared to India. These papers highlight pollution externalities as a potential

channel, and my paper extends these findings by showing strong associations between

2During the first trimester, blood circulation between the mother and fetus is still connected, so high
exposure to agrichemicals in the mother can impact fetal development. Brainerd and Menon 2014 use
this fact to identify the impacts of chemical fertilizers on infant mortality rates in India.

3I use seasonality in NDVI to identify the wet and dry season sowing periods for each district. Typically,
the sowing period marks the start of the agricultural season, where the NDVI starts to increase in a
rapid rate.
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irrigation dams and agrichemical exposures in the regions where they are constructed. I

also provide a more granular spatial assessment of the spillover effects of irrigation dams

on children’s health by using river basin boundaries. In my sample, most health effects

on children are localized to the river basins where irrigation dams are constructed, rather

than in downstream basins. This contrasts with Duflo and Pande 2007, who, using an

older dataset and larger district boundaries as units of analysis, found that agricultural

and economic outcomes improved primarily in downstream regions. The lack of signifi-

cant effects on child health outcomes and agricultural productivity in downstream areas

may be due to the high saturation of dams in India since 1990, where more recent ir-

rigation dams have been built along smaller river networks, focusing primarily on local

impacts. These findings also contribute to the broader literature connecting large irri-

gation infrastructure with improved health and income (Giordano, Namara, and Bassini

2019; Domènech 2015; Okyere and Usman 2021), while also acknowledging negative ex-

ternalities such as increased water pollution (Srinivasan and Reddy 2009).

My second contribution is to the understanding of agrichemical exposure as a key mecha-

nism affecting children’s health in India. Chemical fertilizers and pesticides are essential

inputs in modern agriculture, and exposure to these chemicals – both for pregnant moth-

ers and infants – is linked to immediate and long-term health costs (Brainerd and Menon

2014; Li et al. 2023; Zaveri et al. 2020; Heeren, Tyler, and Mandeya 2003). I find

that dam-induced increases in agrichemical exposure correspond strongly with observed

changes in children’s health outcomes in India, highlighting the urgent need to manage

the externalities of chemical fertilizers. Additionally, agrichemical-related illnesses are

not the only health risks associated with irrigation dams, as I find that malaria inci-

dence also increases in both local and downstream regions of a dam. This aligns with

numerous studies from Asian and African contexts, where irrigation infrastructures – by

increasing inundated and standing water areas – elevates the incidence of vector-borne

and water-related illnesses (Kibret 2018; Mary et al. 2023).

The third contribution is to discussions around the welfare effects of structural and na-

tional agricultural transformations. In India, the Green Revolution fundamentally trans-

formed the agricultural sector by introducing ‘high-yielding variety’ seeds, irrigation in-

frastructure, and increased fertilizer application. These advancements have undoubtedly

led to greater agricultural productivity, economic growth, and significant improvements

in household health (Bharadwaj et al. 2020; von der Goltz et al. 2020; Gollin, Hansen, and

Wingender 2021). However, concerns have been raised about the unequal distribution of

benefits and costs in income generation (Dhanagare 1987; Prahladachar 1983), greater ex-

posure to agrichemicals (Brainerd and Menon 2014), and long-term health consequences

due to changing dietary patterns (Sekhri and Shastry 2023). I find that irrigation dams, a

key component of India’s transforming agricultural sector, have unintended consequences
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on children’s health. It is well documented in the human-capital literature that children’s

health during infancy has strong links to later-life productivity, income, and educational

attainment (Currie and Almond 2011; Currie and Vogl 2013; Lambiris et al. 2022). My

findings highlight a significant gap in the discourse on dams, as most assessment frame-

works rarely consider their effects on children. Without accounting for these impacts,

current assessments risk overestimating the benefits of irrigation dams while overlooking

key inefficiencies related to the health costs they impose on children.

The paper proceeds as follows: Section 2 summarizes key background information on

dams and how agrichemical exposure can affect children’s health. Section 3 describes all

the data used in this study. Section 4 illustrates the empirical strategy used to estimate

the effects of dams on children. Section 5 presents the results and discussion, and finally,

Section 6 concludes.

2 Background

2.1 Dams and Households

Dams are constructed worldwide to better manage increasingly vital water resources

within countries. Their capacity to ensure year-round water availability and facilitate

inland water distribution helps meet the growing demands for food, energy, and income

(Shi et al. 2019). In recent years, dams have also been used for hydroelectric power gen-

eration and as safeguards against climate-induced floods and severe droughts (Boulange

et al. 2021; Edwards, Sanchez, and Sekhri 2024).

Dams can affect households in various ways, with the most direct impact being changes

in agricultural productivity. The seminal paper by Duflo and Pande 2007, one of the

first to empirically evaluate the impacts of dams, finds that dams have spatially varying

effects on agricultural productivity across the districts where they are constructed and

in downstream districts. The study finds that dams increase agricultural productivity

only in downstream districts, with no notable changes observed in the districts where the

dams are built. Similar spatial heterogeneity is documented in Africa as well (Strobl and

Strobl 2011; Blanc and Strobl 2014).

The primary reason for this spatial variability is that downstream regions do not experi-

ence the significant costs associated with dams. Dams often inundate large areas, leading

to increased waterlogging and salinization in surrounding regions (WCD 2001; Pradhan

and Srinivasan 2022). These issues are commonly linked to soil degradation, which re-

duces the potential for agricultural growth. In contrast, downstream districts typically

benefit from dams through irrigation canals that rely primarily on gravity. Additionally,
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dams reduce the sensitivity of agricultural yields to climatic variations in downstream

regions (Sarsons 2015).

In India, dams play a crucial role in ensuring the country’s food production meets the

demands of its growing population. Following the Bengal Famine of 1943, which caused

millions of deaths due to food shortages in eastern India, the government made substantial

investments in the agricultural sector (Sen 1977). India embraced the Green Revolution

during the 1960s, leading to a significant increase in food supply, reduced crop prices,

and higher farmer incomes (Evenson and Gollin 2003). At the same time, India began

constructing dams to enhance irrigation and support the newly introduced high-yield

variety crops. Since the early 1960s, the number of dams has surged from around 400 to

over 4,000, far surpassing the number in other South and Southeast Asian countries. Al-

though dam construction has slowed in recent years, ongoing discussions around national

“river-linking projects”, aimed at increasing irrigation, improving drinking water access,

and reducing flood risks, indicate that dams remain integral to India’s economic vision

(Misra et al. 2007; Shah and Amarasinghe 2016).

The most common types of dams in India are irrigation dams, typically built alongside

rivers or lakes. These dams connect households to water through gravity-driven canals,

forming extensive networks across villages. These canals have significantly increased

agricultural output, wealth, and population density in rural areas (Blakeslee et al. 2023).

This elevation-based technology inherently introduces a spatial dimension to the distri-

bution of benefits and costs, making it an ideal case for studying spatial inequalities and

spillovers.

2.2 Agrichemical Exposure

This paper focuses on one specific pathway through which dams impact households:

changes in agrichemical exposure, particularly through the application of chemical fer-

tilizers. Fertilizers are essential for achieving high yields in modern agricultural systems

and are crucial for maintaining productivity in both developed and developing countries

(McArthur and McCord 2017). Global fertilizer application currently stands at approx-

imately 195 million tons, with nitrogen fertilizers comprising the majority (FAO 2023).

Nitrogen, along with phosphorus and potassium, is a key component of chemical fertil-

izers, providing essential nutrients for plant growth. However, the over-application and

mismanagement of fertilizers have been linked to significant environmental costs, includ-

ing ecosystem disruption, soil imbalances, and severe short-term and long-term health

impacts on mothers and children (Devi, Manjula, and Bhavani 2022; Innes 2013; Keeler

et al. 2016).

The biomedical literature identifies several pathways through which agrichemical exposure
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impacts health, particularly among infants. One of the most significant pathways involves

in-utero exposure to agrichemicals, which can lead to birth defects, low birth weight,

and even mortality (Manassaram, Backer, and Moll 2006; Brender and Weyer 2016;

Restrepo et al. 1990). Excessive exposure can cause ‘blue baby syndrome’, in which high

nitrate levels bind with a baby’s hemoglobin, disrupting the normal transfer of oxygen

(Knobeloch et al. 2000). Additionally, exposure during pregnancy can lead to neural tube

defects, affecting the baby’s spinal cord and overall development (Brender et al. 2004).

It is important to note that alarmingly high nitrate exposure is not necessary to observe

adverse effects on children’s health. Economic and public health literature also links

agrichemical exposure to negative child health outcomes by comparing regions or peri-

ods of high and low chemical fertilizer use. Recent studies in China, a major user of

fertilizers and pesticides, show strong associations between in-utero agrichemical expo-

sure and increased mortality rates, particularly in intensive agricultural regions (Li et al.

2023) and among lower socio-economic households (Lin et al. 2022). Similarly, in India,

rising agrichemical exposure is associated with higher neonatal mortality rates (Brainerd

and Menon 2014).4 Consistent findings are documented in Africa (Heeren, Tyler, and

Mandeya 2003) and even in developed countries like the United States, despite stricter

regulations and monitoring of agrichemical exposure sources (Stayner et al. 2017; Winch-

ester, Huskins, and Ying 2009; Jones 2019).

3 Data

My data consists of household demographic surveys, a georeferenced dam database,

a global hydrological dataset on rivers and river basins, district-level agricultural sur-

veys, and various remote-sensed products to measure agricultural productivity, land use

changes, and climate indicators. Although most of the data represent India at the na-

tional level, they vary in temporal coverage. To make the best use of all these datasets,

the sample period spans 25 years, from 1990 to 2014.

3.1 Demographic and Health Survey

Information on children’s health outcomes and household characteristics comes from the

Indian National Family Health Survey (NFHS). These surveys are the DHS equivalent

for India and are designed using a two-stage cluster sampling design. In the first stage,

enumeration areas within each region are selected using census data. Then, within each

4An unpublished preliminary manuscript by Zaveri et al. 2020 also examines the potential long-term
effects of agrichemical exposure on adults. Their results suggest that high exposure during childhood
can negatively impact adult height in developing countries worldwide.
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area, a sample is drawn from a complete list of households.5 I use the two most recent

rounds of the NFHS (2015-16 and 2019-21), which provide district-level representative

samples and GPS coordinates for household clusters.6 Figure A2 shows the location of

household clusters from both survey waves, illustrating comprehensive sample coverage

across India.

The NFHS collects detailed birth histories from all interviewed mothers, which I use to

construct measures of early childhood mortality over my sample period. Early childhood

mortality is a key indicator of children’s well-being and development. I define three

mortality measures: (i) neonatal mortality, the probability of death before 1 month of

age, (ii) post-neonatal mortality, the probability of death between 1 and 11 months, and

(iii) child mortality, the probability of death between 1 and 5 years. These measures

reflect different risk factors, with neonatal mortality indicating in-utero stressors, post-

neonatal mortality capturing early childhood risk factors, and child mortality reflecting

persistent external and environmental pressures during childhood (MDS 2010).

Table 1 summarizes changes in these health outcomes over the sample period. All three

mortality rates declined significantly, with child mortality dropping by 79%, and both

neonatal and post-neonatal mortality decreasing by about 45%. While these reductions

are notable, largely due to improvements in India’s healthcare infrastructure, concerns

persist that these improvements remain insufficient to fully mitigate the substantial child

health risks in India (Claeson et al. 2000). Among the three indicators, neonatal mortality

was the highest in 2014, approximately three times higher than post-neonatal mortality

and seven times higher than child mortality, indicating that deaths occurring within the

first month of life present the greatest burden in early childhood mortality.

To ensure accurate mortality measures, I limit the sample to children born in locations

where their mothers resided at the time of the survey. The NFHS tracks how long

mothers have lived in their current locations and when they moved. In this sample, only

6.5% of women had remained in the same location since birth, which is expected due to

marriage-related migration. On average, mothers had moved about 17 years prior to the

survey. Using this information, I restrict the analysis to children born after their mothers

relocated, resulting in a sample of around 1.7 million children (approximately 77% of the

total observations).

Table 2 presents statistics on mothers and household characteristics. The average mother

5All surveys are publicly available through the DHS website. An account must be registered with the
DHS to access these surveys. A brief proposal is also required to access both the household and GPS
data of household clusters.

6To ensure confidentiality, GPS coordinates for each household cluster are randomly displaced. In urban
areas, clusters are displaced by up to 2 km; in rural areas, by up to 5 km, with an additional 1% of rural
clusters displaced by up to 10km.
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had completed secondary education, and about half of the children were girls. The NFHS

also collects data on household wealth through a composite index based on assets and

physical attributes of homes. Around three-fourths of the households in the sample lived

in rural areas, with approximately 90% having access to electricity and improved drinking

water sources. However, only 60% had access to improved sanitation facilities.7

3.2 Dam Database

To identify the locations of irrigation dams in India, I use the Global Dam Tracker

(GDAT) database, which provides spatially explicit information on dams worldwide

(Zhang and Gu 2023). The GDAT compiles data from existing global dam databases and

validates each dam using local government reports and satellite images. This database

includes details such as the year of completion, dam dimensions (height and length), and

the primary purpose of construction.8

Focusing on India, the GDAT contains information on 4,367 dams up to 2014, with

approximately 89% classified as irrigation dams (Figure A3). Dams higher than 15 meters

are typically categorized as ‘large dams’, and over half of the irrigation dams fall into

this category.9 The remaining dams serve purposes such as hydroelectricity (6%), flood

control (1%), water supply (2%), or are undefined (2%). During the sample period, about

700 irrigation dams were constructed, representing a 25% increase in irrigation dams and

a 31% increase in large irrigation dams.

Figure 1 shows the frequency of irrigation dam construction since 1900. Most of these

dams were constructed during the 1960s, coinciding with the start of the Green Revolution

in India, when there was significant governmental and international focus on increasing

agricultural productivity. Another peak in dam construction occurred in the late 1990s,

coinciding with large economic reforms in India that increased both international and

federal funding for agricultural infrastructure (Mohan Rao and Krishna Dutt 2006). Since

then, the construction of both irrigation and non-irrigation dams has declined.

Figure 2 illustrates the spatial distribution of irrigation dams at the district level. While

most districts have at least one dam, notable spatial clustering exists. Northern India,

for example, has no irrigation dams, largely due to geographical factors that make the

terrain either too steep or too flat for dam construction. The need for a moderate incline

for feasible dam construction plays an important role in isolating the impacts of dams on

7The definition of improved drinking water and sanitation facilities is based on a comparison of multiple
sources, with certain sources classified as the improved and preferred categories.

8I use the most recent: ‘GDAT data v1.zip’ version of the database accessed through Zenodo.

9Figure A4 illustrates the distribution of irrigation dams by height.

9

https://zenodo.org/records/7616852


child health outcomes.

3.3 Geographic Unit

I use two geographical boundaries – district and river basin boundaries – as units of

analysis in this study. Figure 3 shows both boundaries. District boundaries are an

intuitive choice because the NFHS surveys are representative at this level. Although

household clusters are randomly displaced to preserve confidentiality, the displacement

occurs within the same district, ensuring households are not misidentified across districts.

To account for changes in district and state boundaries over time, I use the administrative

boundaries defined in the NFHS 2015 survey, which includes 623 districts and 32 states.10

However, district boundaries have a key disadvantage: regions within a district can vary

significantly. Despite being smaller administrative units, the average district covers ap-

proximately 5,000 square kilometers, which limits the ability to capture spatial hetero-

geneity. Additionally, districts often have non-uniform elevation and slope, making it

difficult to distinguish between upstream and downstream regions, which is crucial for

understanding how dams impact households. While I use river network directions to clas-

sify upstream and downstream districts, the large size of districts means that locations

within a single district can function as both upstream and downstream areas.11 This

makes it more challenging to capture the spatially varying effects of dams accurately.

To address this issue, I use digitally constructed river basin boundaries from the World

Wildlife Fund’s HydroSHEDS database (Lehner and Grill 2013). These boundaries are

generated remotely using elevation and hydrological models and are available at different

spatial resolutions.12 Each basin includes detailed geographical attributes such as slope,

gradient, elevation, and the length of all rivers within the basin. The main advantage of

using river basin boundaries is that they are directly linked to their respective upstream

and downstream basins, making it easier to identify a dam’s catchment and downstream

command areas.13

10Union territories are considered separate states in these surveys. To ensure comparability in state size,
I merge smaller states with neighboring ones, resulting in a final set of 27 revised states.

11Data on river networks comes from the HydroSHEDS database, which contains detailed information on
rivers, including attributes and flow direction. Figure A5 maps the river networks in India.

12All maps and products are publicly available through the HydroSHEDS website.

13There is a valid concern about the potential misidentification of households across multiple river basins.
However, I select a river basin boundary resolution that minimizes this error. While I could filter out
household clusters overlapping multiple river basins, I choose to retain them, as the average displacement
of just 5km is unlikely to introduce significant bias. The results are robust to dropping these overlapping
household clusters from the analysis.
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3.4 Agricultural Data

Since irrigation dams introduce significant changes to local agricultural systems, it is

essential to account for shifts in agricultural inputs and outputs when studying their

impacts on households. The first outcome of interest is changes in cropland area, which I

measure using the MODIS land cover type classification product. This publicly available

dataset provides land cover classifications at 500-meter resolution from 2001 onward,

categorizing land pixels into various types. I focus on changes in urban, cropland, and

forested pixels to assess whether irrigation dams influence these land use classifications.

The second outcome of interest is agricultural productivity, arguably the primary reason

for constructing irrigation dams. Given that I use river basin boundaries, I require a pro-

ductivity measure that can be represented at the river basin level. Unfortunately, India

lacks nationally representative data on agricultural productivity at scales smaller than

district boundaries. In the absence of such data, I rely on remote-sensed measures of agri-

cultural productivity, specifically the Normalized Difference Vegetation Index (NDVI).

NDVI is calculated by measuring changes in the surface reflection of near-infrared light

and is widely used in economic literature as a proxy for agricultural productivity. It

has been validated in both African (Lobell et al. 2020) and Asian (Son et al. 2014) con-

texts. The advantage of satellite-based vegetation measures is their high spatial and

temporal resolution.14 I extract monthly NDVI values to construct a measure of agricul-

tural productivity for India’s main growing seasons: Kharif (wet season) and Boro (dry

season). Following Asher and Novosad 2020, I define each season’s agricultural produc-

tivity by subtracting the mean NDVI of the first six weeks from the maximum NDVI

reached during that season.15 This method ensures that the productivity indicator ex-

cludes non-agricultural vegetation, such as forests, which do not fluctuate significantly

within a growing season.

For agricultural inputs, I use district-level surveys conducted by the International Crops

Research Institute for the Semi-Arid Tropics (ICRISAT), which provide detailed informa-

tion on agricultural inputs and outputs.16 I use the ‘unapportioned’ district boundaries,

which align closely with NFHS district boundaries. The primary indicator of interest from

these surveys is the total annual application of fertilizers. The survey measures the total

amount of nitrogen, phosphorus, and potassium (NPK) applied in tons for each district.

These three components make up NPK fertilizers, which are widely used to supplement

14In this study, NDVI data is derived from the AVHRR sensor maintained by the National Oceanic and
Atmospheric Administration, available globally from 1981 to 2013 at a resolution of 0.05 degrees. This
product was accessed and extracted using Google Earth Engine.

15In India, the Kharif season typically runs from late May to October, while the Boro season runs from
late December through March (Selvaraju 2003).

16The surveys are maintained on the ICRISAT website District Level Database.
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soil nutrients and increase yields but also contribute to environmental imbalances both

globally and in India (Randive, Raut, and Jawadand 2021).

Table 1 shows trends in these agricultural variables over the sample period. As expected,

wet season NDVI values are considerably higher than dry season values, as the monsoon

season is India’s primary agricultural period. However, during the sample period, wet

season NDVI increased by roughly 15%, while dry season NDVI grew by a substantial

120%, indicating greater productivity gains during the dry season. This suggests signifi-

cant efforts have been made to enhance agricultural productivity in the dry season.

Similarly, the application of chemical fertilizers increased considerably. Among the three

components of NPK fertilizers, nitrogen is the most widely applied, followed by phos-

phorus and potassium. Nitrogen fertilizer saw the largest increase, rising by nearly 50%,

while phosphorus and potassium increased by approximately 30% on average.

3.5 Other Data

I also use a remote-sensed measure of malaria prevalence to assess whether irrigation

dams affect malaria incidence in surrounding regions. Data comes from the Malaria

Atlas, which combines on-the-ground records with climatic factors to estimate malaria

risk levels.17 From this database, I use two key indicators: (i) the parasite rate, which

measures malaria-related parasite prevalence in an area, and (ii) the malaria incidence

rate, which tracks the number of malaria cases in a region. Both indicators decreased by

approximately 20% on average, during the sample period in India.

In addition, I incorporate satellite-based measures of climatic conditions, specifically

rainfall and temperature. Rainfall data is sourced from CHIRPS (Climate Hazards

Group InfraRed Precipitation with Station data), while temperature data is obtained

from ECMWF (European Centre for Medium-Range Weather Forecasts). Both climate

products provide high-resolution grids interpolated using ground observations, ensuring

availability at fine spatial and temporal scales.18

Finally, to assess whether irrigation dams affect local water quality, I use water quality

reports from the Central Pollution Control Board (CPCB), which operates under the

Ministry of Environment, Forest, and Climate Change.19 The CPCB maintains an online

database that monitors the quality of water resources across India. These water qual-

17Data can be downloaded from the Malaria Atlas website

18All satellite information is accessed and extracted using Google Earth Engine. Links to these products
are available through the following links: land cover, rainfall, and temperature.

19The website for the CPCB Water Quality records can be accessed through their website. However, this
newly updated website only records information from 2012 onward. Data from 2007 can be accessed
through the old website.
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ity measures are recorded using monitoring sites scattered across India, and I focus on

monitoring sites collecting data on rivers and groundwater (Figure A6). These records

include numerous water quality measures, and I focus on nitrate content, dissolved oxy-

gen (DO), and biochemical oxygen demand (BOD).20 More specifically, I define “unsafe

nitrate levels”, as instances where nitrate concentrations exceed 10 mg/L, which is the

standard threshold used to indicate levels of nitrate that pose a risk to children’s health.

4 Identification Strategy

A simple empirical framework to estimate the effects of irrigation dams on children’s

health is illustrated in the following equation:

Yibt = β0 + β1Damibt + β2LDam
Up
ibt +Mibt +Xbt + µb + ϕt + εibt (1)

where, Yibt indicates the early-childhood mortality status for child i in river basin b

and year t.21 Damibt represents the total number of irrigation dams within each river

basin, while LDamUp
ibt denotes the number of large irrigation dams upstream of the river

basin. I only consider large irrigation dams upstream, as these dams are likely to have

command areas that extend to downstream regions. Mibt represents a vector of child-

level, mother-level, and household-level controls known to impact child mortality rates,

and Xbt represents regional geographic characteristics.22 µb represents river basin fixed-

effects that capture all time-invariant unobserved heterogeneity specific to each basin,

and ϕt denotes year fixed-effects that account for common temporal shocks affecting all

basins in any given year.

Even with the inclusion of unit and year fixed effects, along with household and geographic

controls, the coefficients β1 and β2 may still be biased due to non-random placement of

dams. For instance, if dams are strategically built in agriculturally prosperous regions

to optimize benefits, and if children in these areas have better access to food and health

facilities that lower mortality rates, then the coefficients could underestimate any negative

effects that irrigation dams might have on children.

20Nitrate and DO levels are sensitive to agricultural pollutants; an increase in nitrate and a decrease in
DO typically indicate greater agrichemical pollution in the region. BOD, on the other hand, is a broader
indicator of water health, often reflecting wastewater contamination in water bodies.

21I consider three different mortality indicators (neonatal, post-neonatal, and child mortality), which equals
1 depending on if and when the child passed away. Additionally, b primarily represents river basins, which
is the preferred unit of analysis, but results using district boundaries are also analyzed.

22More specifically, Mibt includes household wealth index, whether household is in a rural area, whether the
household has improved source of drinking water, whether household has improved sanitation facilities,
whether the child is a girl, mother’s height, mother’s education level, and mother’s age.
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To address this bias, I use an instrumental variable strategy, leveraging river gradients

to predict the construction of irrigation dams. This approach is motivated by Duflo and

Pande 2007, who demonstrate that river gradients exhibit a non-monotonic relationship

with dam construction. Specifically, flatter and steeper river gradients are less likely to

have irrigation dams due to higher construction costs. This aligns with the expectation

that irrigation dams, which primarily distribute water through gravity-driven canals,

require a high incline to be cost-efficient.

I calculate the proportions of four river gradient quartiles: low, moderate, high, and

steep, within each river basin or district boundary.23 Figure A7 graphically illustrates

the likelihood of irrigation dams across these river gradient bins. As expected, the high

gradient bin is strongly correlated with the presence of irrigation dams. Therefore, river

basins or districts with a greater proportion of high gradient areas are more likely to have

irrigation dams.

Since my sample spans from 1990 to 2014, I need time-varying predictions of dam con-

struction. River gradient bins are time-invariant, so I interact them with a measure of

‘predicted dams’ to ensure they are not absorbed by the region fixed effects (Duflo and

Pande 2007). This predicted dam variable is constructed by multiplying the total number

of yearly dams in India by the state’s share of dams in 1989 (the year before the sample

period). Thus, the instrument identifies causal effects by exploiting how national-level

changes in dam construction differentially impact regions based on their river gradient

characteristics and historical state-shares of dam construction, after accounting for region

and year-specific factors.

Formally, my first stage regression takes the following form:

Damibst = α1 +
4∑

k=2

α2k(RivGradientkbs × D̄st) + α3(Gbs × Tt)+

4∑
k=2

α4k(RivGradientkbs × Tt) +Mibt +Xbs + νb + ϕt + ωbst

(2)

Here, the outcome Dam represents the number of irrigation dams in river basin b within

state s at year t. RivGradientbs represents the proportion of each river gradient bins

within each river basin. These river gradient bins are interacted with D̄st, which is

the predicted dam incidence measure. Gbs represents other geographical characteristics,

such as elevation, average land gradient, total river length, and region area, all of which

could influence the likelihood of dam construction. Since these geographical variables are

time-invariant, they are interacted with year dummies Tt. River gradient bins are also

23River gradients below 5 decimeters per km are categorized as low, between 5 to 20 decimeters per km
as moderate, between 20 to 66 decimeters per km as high, and above 66 decimeters per km as steep.
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interacted with year dummies to account for time-varying effects specific to certain gra-

dient bins. Finally, along with all the relevant controls from the second stage regression,

νb and ϕt represent the region and year fixed effects respectively.

This design resembles a shift-share-like methodology, leveraging national trends in dam

construction (the shift) and the pre-determined, state-specific shares (the shares) to cre-

ate an instrument that varies over time and across regions. Recent studies emphasize

the need to justify the identification assumption in such shift-share-like designs by either

arguing for exogeneity in the shares (Goldsmith-Pinkham, Sorkin, and Swift 2020) or

exogeneity in the shift variable (Borusyak, Hull, and Jaravel 2022). I follow Goldsmith-

Pinkham, Sorkin, and Swift 2020, who show that a shift-share design is similar to a

pooled exposure design, where industry shares measure differential exogenous exposure

to a common shock. For valid identification, I show that regions with different state

shares do not exhibit pre-existing trends. In other words, only the common shock during

the sample period affects changes in outcomes, not any pre-existing trends.24

I then estimate the second-stage using the predicted values of irrigation dams with the

following equation:

Yibt = β0 + β1D̂amibt + β2D̂am
Up

ibt +Mib +Xbt + µb + ϕt + εibt (3)

Now, D̂am and D̂am
Up

hat represents the predicted irrigation dams in the region and

predicted large irrigation dams in upstream regions respectively. Xibt represent a set of

geographical and river gradient trend controls described earlier. Additionally, I control

for the number of non-irrigation dams constructed in a region and its respective upstream

regions to account for any effects these dams could have on households. Since I use an

instrumental variable strategy, the coefficients now represent the local average treatment

effect of dams that are primarily constructed due to geographical suitability.

One concern is that river gradient bins, the primary instrument, could influence child

health outcomes through channels other than irrigation dam construction. In fact, these

gradients are strong predictors of household wealth and infrastructure, potentially vi-

olating the exogeneity assumption. To address this, I include a comprehensive set of

household controls in Equation 3, such as household wealth index, rural residence, ac-

cess to improved sanitation and drinking facilities, electricity, child’s sex, and mother’s

education level.

I estimate Equation 3 for various early childhood mortality outcomes using both district

24More rigorous tests for the exogeneity of shares exist, but these are under the framework of a conventional
shift-share design consisting of multiple industry shares within a region. Since I only have one share (state
shares of irrigation dams), I cannot compute the necessary Rotemberg weights for these tests, so I rely
on the pre-existing trend test to justify the validity of the state share.
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and river basin fixed effects. I also use this same equation to examine potential channels

through which irrigation dams may impact mortality outcomes. To address potential

heteroskedasticity in the panel data, I employ the commonly used two-step Generalized

Method of Moments (GMM) estimator. This method provides robust standard errors

that account for heteroskedastic error structures common in the dataset. Standard errors

for all regressions are clustered at the river basin (or district) level, which is the level

where irrigation dams vary across household groups. The GMM estimator also enhances

the efficiency of the estimates by utilizing an optimal weighting matrix, ensuring more

reliable and precise inference in the presence of clustered data.

Based on the results from the above equations, I identify increased agrichemical exposure

as a potential channel through which irrigation dams increase child health risks in India.

Previous literature documents that babies exposed to large quantities of agrichemicals

during the first trimester are at increased risk for birth defects and mortality. Building on

this observation, I investigate whether children whose first trimester coincides with the

district’s sowing period – the months when fertilizer application is highest – experience

higher neonatal mortality, and whether these effects are exacerbated by the presence of

irrigation dams.25

Calculating the months of the first trimester for each child is straightforward as this can

be inferred from their date of birth, but identifying the sowing periods for the wet and dry

seasons in each district requires additional steps. There is no official calendar marking

the start of the sowing periods, as they depend on crop composition and the local climate

of each district. To estimate the wet and dry sowing periods efficiently, I analyze the

seasonality in NDVI for each district in each year. Typically, the sowing period marks

the start of the agricultural cycle, when crops are planted or begin to germinate. NDVI

values are low at the start but rise rapidly by the end of this period (Rodigheri et al.

2023).

For each season, district, and year, I identify the lowest point in NDVI values. Rather

than using raw NDVI values, which can fluctuate erratically across months, I use predicted

NDVI values generated by a flexible trigonometric polynomial function. This approach

produces a smoother, more cyclical NDVI curve that better captures the seasonality of

vegetation changes.26 Figure A8 graphically illustrates this process. For each season, the

25A similar empirical strategy is used by Brainerd and Menon 2014, who exploit state differences in birth
timing, sowing periods, and water quality. In this paper, I exploit within-district differences in birth
timing, sowing periods, and irrigation dam intensities.

26I use a second-order trigonometric polynomial with the following functional form: Yt = α1 sin
(
2πt
1

)
+

α2 cos
(
2πt
1

)
+ α3 sin

(
2πt
0.5

)
+ α4 cos

(
2πt
0.5

)
+ εt. This function is flexible enough to capture two peaks in

NDVI within the same year, which is required to estimate the peaks in both the wet and dry seasons for
each district. The benefits of using this trigonometric approach over comparing raw means are discussed
elsewhere (Shakya, Bevis, and Thorne-Lyman 2024).
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month with the lowest predicted NDVI is identified as the sowing period.

I then estimate the following equation.

Yidt = γ0 + γ1Sowidt + γ2nDam
n
idt + γ3n(Sowidt ×Damn

idt) +Xidt + µd + ϕt + εidt (4)

In this equation, Y represents the incidence of neonatal mortality for child i in district d

in year t. Sow is a binary variable indicating whether the child’s first trimester coincides

with the district’s sowing period. Dam is a categorical variable that divides districts into

three terciles based on the total number of irrigation dams (low, moderate, high). The

key parameter of interest is γ3, which represents the interaction between being conceived

during the sowing period and the irrigation dam intensity of the district. A significant

positive γ3 would suggest that higher irrigation dam intensity, possibly due to increased

chemical fertilizer use, raises health risks for children conceived during the sowing period.

The identifying variation used to isolate the additional impact of high irrigation dam

intensity on children conceived during the sowing period relies on the plausibly random

timing of births in India. A balance table comparing children born during the district’s

sowing period and with those born outside it shows no significant differences in key

covariates (Table A1). However, to control for potential biases from seasonal factors

and household characteristics, X also includes household controls (as in Equation 3) and

environmental controls (rainfall and temperature).

5 Results and Discussion

5.1 Early Childhood Mortality Results

Table 3 presents the relationship between river gradient bins and irrigation dams, using

both district and river basin boundaries. In all models, the omitted river gradient bin

is ‘low gradient’. Columns 1 and 2 show the cross-sectional relationship, where the

coefficient for the high gradient bin is significant and positive, while the other river

gradient bins do not display significant effects relative to the reference level. This result

aligns with the expected non-monotonic relationship between river gradients and dam

construction, where some degree of steepness is necessary to make dams cost-efficient.

Columns 3 and 4 show the interaction of these river gradient bins with predicted dam

incidence in a panel setting, representing the full first-stage results when considering

irrigation dams constructed within a region. For both districts and river basins, the F-

test for river gradients indicates that the instrument is strong, with values exceeding the

rule-of-thumb threshold of 10 (Stock and Yogo 2005).
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To validate the shift-share-like design, I demonstrate that the effects of irrigation dams

across different state shares observed during my sample period (1990-2014) are not driven

by changes that occurred prior to my analysis. I test for pre-existing differential trends in

early childhood mortality outcomes across states with varying dam shares. Specifically,

I examine mortality incidences from 1980 to 1989 by regressing each mortality outcome

on high and low state shares, using the same controls as in Equation 3. Figure A9 shows

no significant pre-trends in neonatal mortality, supporting the notion that pre-existing

differences in state shares of dams do not predict changes in neonatal mortality through

channels other than post-1990 dam construction.

Table 4 presents the OLS and IV results of the impacts of irrigation dams on early-

childhood mortality indicators using river basin boundaries. Columns 1 and 2 present

the results for neonatal mortality, where the OLS estimation indicates a small increase

in mortality (0.08 percentage points) when irrigation dams are constructed in the basin

and a larger decrease in mortality (0.34 percentage points) for large irrigation dams

constructed upstream. However, as mentioned earlier, these estimates may be biased.

The IV estimation leads to a slightly different result: irrigation dams constructed in a

basin lead to a greater increase in mortality (0.26 percentage points), approximately 7.6%

of the sample mean for neonatal mortality. Notably, irrigation dams upstream no longer

have any effect on neonatal mortality.

The IV results for post-neonatal mortality (column 4) and child mortality (column 6)

are insignificant for both irrigation dams constructed within a river basin and those con-

structed upstream. These two mortality indicators capture health risks to older children,

with child mortality assessing the cumulative risk for children between ages 1 and 5.

There could be several reasons why these indicators show no significant effects. One pos-

sibility is that irrigation dams, regardless of their location, have no impact on mortality

rates for older children, as dam-induced health risks might be more closely associated

with in-utero conditions or those occurring immediately after birth – both of which are

strongly linked to neonatal mortality. Another explanation could be limited variation

in the post-neonatal and child mortality indicators. The majority of early childhood

mortality in India is neonatal, comprising almost 60% of all child deaths, so the lower

frequency of post-neonatal and child mortality could contribute to the lack of significant

results.

The results remain robust when disaggregating river basins into those without upstream

basins and those with upstream basins (Table A2). Approximately 60% of river basins

lack an upstream basin, and for these basins, irrigation dams increase neonatal mortality

by 0.25 percentage points. This effect isolates the impact of local irrigation dams, as there

are no upstream dams influencing the results. However, when focusing only on basins

with at least one upstream basin, the sample size decreases considerably, and the results
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lose statistical significance. Similarly, the results hold when excluding observations that

could potentially fall into different river basins due to household cluster displacement by

the NFHS (Table A3). In this case, the impact of irrigation dams within the river basins

is around 0.29 percentage points.

When using district boundaries instead of river basin boundaries, the effects of irrigation

dams on early childhood mortality are not significant (Table A4). None of the mortality

indicators show significant changes at the district level, regardles of whether the dams are

constructed locally or upstream. As noted earlier, districts in India are large administra-

tive units that aggregate substantial local heterogeneity in household and geographical

characteristics, which may obscure any effects that irrigation dams have on child health

outcomes.

5.2 Examining Pathways

To explore the channels through which irrigation dams increase neonatal mortality in

the river basins where they are constructed, I examine how these dams alter broader

environmental and agricultural characteristics in river basins and districts. First, I assess

how these dams affect land use composition, focusing on three major land classifications:

cropland, forest, and urban areas. Second, I analyze changes in malaria indicators by ex-

amining how irrigation dams impact the malaria parasite rate and incidence rate. Third, I

investigate how these irrigation dams impact agricultural productivity, potential changes

in agricultural inputs, and their effects on water quality measures. Finally, I examine

whether children experience elevated risks when their first trimester of in-utero develop-

ment coincides with periods of high agrichemical exposure in regions with different dam

intensities.

Table 5 presents the results of how irrigation dams change land use composition at the

river basin level. As expected, irrigation dams increase cropland area (column 1), with

local areas experiencing a 4.5% increase and downstream basins showing a larger increase

of 7.8%. This expansion of cropland is typically associated with a decrease in forested

areas (column 2) and a smaller decline in urban spaces (column 3). Specifically, forested

areas and urban areas decrease by 3.7% and 0.6% respectively in river basins where irriga-

tion dams are constructed, and by slightly larger amounts of 5.2% and 1.7% respectively

in downstream river basins.

Table 6 presents the changes in malaria parasite rate and incidence rate at the river

basins estimated using the IV strategy. Column 1 shows that irrigation dams within the

basin, as well as large irrigation dams upstream, increase the parasite rate by 0.30 and

0.45 percentage points respectively. A similar pattern is observed for malaria incidence

rates (column 2), where irrigation dams in the basin and large irrigation dams upstream

19



increase the incidence rate by 0.73 and 1.0 percentage points respectively. While this rise

in malaria could contribute to higher neonatal mortality rates, the fact that both local

and downstream areas show increased malaria risk suggests that additional health risk

factors may be responsible for the localized health costs generated by irrigation dams.

Focusing on agricultural productivity, Table 5 presents the changes in log NDVI, a proxy

for agricultural productivity, in the river basins. Local irrigation dams do not appear

to affect wet season agricultural productivity (column 4) but they significantly increase

dry season productivity by approximately 25% (column 5). There are no noticeable dam-

induced changes in agricultural productivity for downstream river basins, suggesting that

similar to the effects on child health, the impacts of dams on agricultural productivity

are more localized and concentrated in the dry season.

Although previous validation exercises show that local changes in NDVI can serve as a

suitable proxy for actual crop yield changes, there are concerns that NDVI – being a

remote measure of vegetation with a spatial resolution of only 500 meters – might not

strongly correlate with regional crop yields in my sample. To validate the link between

crop yields and NDVI internally, I compare district-level changes in NDVI with actual

crop yield data from the ICRISAT surveys. These surveys record district-level yields for

key crops across India, allowing me to compute wet and dry season yields for each district

over the sample period.27

Table A5 presents district-level changes in both wet and dry season agricultural yields

using ICRISAT and NDVI indicators. Columns 1 and 2 present the wet season results,

where there is some correlation between the two productivity indicators, with irrigation

dams slightly reducing both wet season yields and NDVI in districts where the dams are

constructed. However, large irrigation dams upstream decrease yields while increasing

NDVI values, though these discrepancies account for only a small portion of district-

level yield changes. Columns 3 and 4 present the results for the dry season, where the

relationships between yields and NDVI are more consistent. Irrigation dams constructed

in the basin increase yields by approximately 140 kg/ha, with NDVI also rising by roughly

20%. Irrigation dams upstream reduce yields by a smaller amount, which is similarly

reflected by a smaller decrease in NDVI. These district-level estimates provide confidence

that, in this setting, there are strong correlations between dam-induced changes in yields

and NDVI, particularly during the dry season.

It is important to note that my findings on agricultural productivity differ from previous

research on the impact of irrigation dams in India. Duflo and Pande 2007 found that

27The survey contains information on 10 crops. I define wet season crops as: cotton, groundnut, maize,
pigeonpea, pulses, rice, sorghum, soyabean, and sugarcane, and the dry season crops as: barley, cas-
tor, chickpea, millet, fruits/vegetables, linseed, oilseeds, onion, potatoes, rapeseed, safflower, sesamum,
sorghum (boro season), sunflower, and wheat.
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agricultural productivity increased primarily in downstream districts, while productivity

in the district where dams were built remained unchanged. One possible explanation

for these differing results could be the sample period. Duflo and Pande 2007’s study

covers 1971 to 1999, whereas my sample spans 1990 to 2014 a period during which dam

saturation in Indian districts was already high. It is possible that more recent dams have

been constructed primarily to increase productivity in local areas. Figure A10 illustrates

the average flow rate of local rivers where irrigation dams were constructed from 1970

onward.28 Post-1990 dams are more likely to be constructed near smaller river networks,

possibly indicating a shift towards connecting dams to smaller river networks, which may

explain why productivity increases are more localized.

Increases in agricultural productivity are often associated with higher household income

and improved diet quality, so the fact that irrigation dams both increase local agricultural

productivity and raise child mortality rates seems contradictory. To better understand

the changes introduced by greater agricultural productivity, I assess the impact of irri-

gation dams on chemical fertilizer applications. Table 7 shows changes in key fertilizer

components at the district level, indicating that irrigation dams increase the application

of nitrogen (column 1) and phosphorus (column 2) by approximately 1350 and 550 tons

respectively. This represents an increase of roughly 5% from the respective sample mean.

Interestingly, potassium (column 3) – another key component of NPK chemical fertilizers

– does not increase in districts where dams are constructed, but it does increase in down-

stream districts. However, potassium use in India in relatively low compared to nitrogen

and phosphorus, as it is typically applied to specialty crops.

The increase in chemical fertilizer use, particularly in regions where irrigation dams are

constructed, aligns with the observed rise in neonatal mortality rates despite gains in

agricultural productivity. India faces significant challenges with the over-application of

chemical fertilizers, which has already led to substantial health costs for children (Brain-

erd and Menon 2014). Similarly, studies in China, one of the largest consumers of chemical

fertilizers, have linked greater fertilizer exposure to higher child mortality rates, even in

regions with increased agricultural productivity (Li et al. 2023; Lin et al. 2022).

Since the chemical fertilizer application data is at the district level, I also use water

pollution monitoring data from the Central Pollution Control Board (CPCB) to assess

whether irrigation dams affect local water quality. Due to data limitations and a lack

of comprehensive monitoring sites across India during the sample period, I analyze these

water quality measures using OLS with state and year fixed effects, along with river basin

controls and the non-irrigation dams indicator used in previous analyses. Table 7 also

28It is not possible to identify the exact water body connected to specific dams. To assess the local river
characteristics for each dam, I create a 200-meter buffer around each dam and calculate the average river
characteristics for all rivers within that buffer.
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presents these results. In river basins where irrigation dams are constructed, nitrate levels

in the water increase by approximately 0.065 mg/L on average (column 4), providing

corroborative evidence that dam-induced increases in chemical fertilizer use are associated

with higher agrichemical pollution in local water bodies. Dissolved oxygen, another

indicator of water health, also declines slightly by 0.008 mg/L on average (column 5).

However, biochemical oxygen demand (BOD), a broader measure of water quality that

often reflects wastewater contamination, does not show significant changes in river basins

with irrigation dams (column 6), suggesting that water quality issues in these regions are

specifically related to agrichemicals rather than general pollution. Irrigation dams do not

appear to alter water quality measures in downstream river basins. Additionally, I find

that irrigation dams constructed within the basin increase the probability of reaching

unsafe nitrate levels (above 10 mg/L) by approximately 3.6%.

To further link dam-induced increases in agrichemicals to neonatal mortality, I estimate

Equation 4 to examine the effects of a child’s first trimester coinciding with the sowing

period in districts with varying intensities of irrigation dams. Table 8 presents the results

for the wet season (column 1 and 2) and the dry season (column 3 and 4) in districts

with differing irrigation dam intensities. Focusing on the results with controls, during

the dry season, when the dam-induced increases in chemical fertilizer use are observed,

the interaction effects are positive and significant for children whose first trimester co-

incides with the sowing period in districts with moderate irrigation dam intensity (0.45

percentage points) and high intensity (0.53 percentage points) (column 4). While inter-

actions during the wet season are also positive and significant, their magnitude is smaller

(0.18 percentage points for high intensities) (column 2), suggesting that dry season agri-

chemical exposure exerts a stronger effect on neonatal health in regions with higher dam

intensities.

These findings provide additional evidence that dam-induced increases in agrichemical

exposure, particularly chemical fertilizers, may explain the observed rise in neonatal mor-

tality in areas where irrigation dams are constructed in India. For children whose second

or third trimester coincide with the district’s dry season sowing periods, no significant

effects emerge (Table A6). This results highlight the importance of the first trimester –

a period when agrichemicals have the most detrimental effects on infants – as a critical

pathway for explaining the earlier observed health costs.

6 Conclusion

This paper investigates whether irrigation dams in India impose health costs on children

and explores the spatial variation of these effects. Using river gradients as instrumental
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variables and river basin boundaries to identify spatial spillovers, I find that irrigation

dams significantly increase neonatal mortality in the basins where they are constructed,

but I find no evidence that these irrigation dams change the mortality of children in

downstream basins. Analyzing the underlying mechanisms, I find that irrigation dams

expand cropland area in both local and downstream basins, at the expense of urban

and forested areas. Malaria incidence also rises in both local and downstream basins.

But interestingly, agricultural productivity increases only in the basins where irrigation

dams are constructed, with no productivity gains observed downstream. This localized

increase in productivity is strongly linked to greater use of chemical fertilizers (nitrogen

and phosphorus) and higher concentration of nitrates in local rivers and groundwater.

I also find corroborative evidence that the increased use of chemical fertilizers likely

contribute to heightened child health risks in regions with irrigation dams, based on the

timing of children’s births relative to peak fertilizer application in these regions.

The findings of this paper have several policy implications. First, the evidence show

that irrigation dams in India impose significant health costs on children. Conventional

cost-benefit analyses conducted before dam construction, or evaluations made afterward,

rarely account for the health impacts on children. As a result, the societal benefits of dams

are often overestimated, while critical health costs to infants are overlooked. Second,

the increase in neonatal mortality persists despite improvements in local agricultural

productivity. Irrigation dams built in India after 1990 have been effective in increasing

agricultural productivity, particularly during the dry season. However, these productivity

gains have come at the cost of increased chemical fertilizer use. Notably, fertilizer use

in India continues to rise at an alarming rate, even as crop yields improvements lag

behind. Better management of chemical fertilizers is needed to mitigate the the health

risks associated with their overuse.

It is also important to acknowledge the limitations of this study, primarily driven by data

constraints. Much of the analysis of the channels through which irrigation dams affect

children relies on remote-sensing measures. While these measures have been validated in

prior studies, they are not as precise as ground-level estimates, which would likely provide

more accurate results. This paper also identifies agrichemical exposure as one possible

pathway and is not suggesting it is the only pathway by which dams could affect child

health outcomes. For instance, irrigation dams could also increase the number of hours

women work in agriculture, which may be linked to the health outcomes of their children.

Finally, this paper highlights the need to address additional questions to better under-

stand the effects of irrigation dams on human welfare. A more thorough investigation into

the long-term health consequences of irrigation dams on children is required to assess the

true return on these investments for local communities. In this regard, examining hetero-

geneous effects across household characteristics, regions, and behaviors could shed light
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on the differential risks faced by sub-populations and how large agricultural investments

may have distributional effects across groups. Answering these questions will require ad-

ditional data, which was not available at the time of this study. Nonetheless, this paper

provides evidence of the unintended consequences of large agricultural investments and

technologies on human health and highlights the need to account for these costs to ensure

that such investments yield the greatest benefits for society.
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Tables and Figures

Table 1: Summary statistics of variables at the beginning and end of the sample period. [back]

Start of Sample End of Sample

Mean Std.dev Mean Std.dev Change (%)

Child health outcomes
Neonatal mortality (death before 1 month) 0.047 0.212 0.027 0.162 -43.1
Post-neonatal mortality (death between 1-11 months) 0.015 0.123 0.008 0.091 -46.4
Child mortality (death between 1-5 years) 0.020 0.140 0.004 0.065 -79.0

Dam frequency
Irrigation dams 2,763 - 3,455 - 25.0
Large irrigation dams 1,583 - 2,078 - 31.3
Other types of dams 297 - 406 - 36.7

Agricultural variables
Nitrogen (tons) 21,245 21,423 31,250 28,573 47.1
Phosphorus (tons) 8,669 8,282 11,223 11,275 29.5
Potassium (tons) 3,507 5,196 4,680 7,310 33.4
Wet season NDVI 1,552 679 1,794 805 15.5
Dry season NDVI 285 315 624 710 118.8

Other variables
Urban area pixel (%) 0.039 0.131 0.031 0.108 -21.0
Cropland area pixel (%) 0.807 0.315 0.790 0.320 -2.1
Forest area pixel (%) 0.154 0.303 0.180 0.315 16.4
Average rainfall (mm) 3.262 1.807 2.973 1.768 -8.9
Average temperature (c) 21.863 8.682 21.995 8.972 0.6
Malaria parasite rate (%) 0.006 0.017 0.004 0.017 -21.5
Malaria incidence rate (%) 0.012 0.031 0.009 0.032 -23.5

For most variables, the start of the sample indicates values from 1990, and the end of the sample indicates values from 2014. The
exceptions, due to data availability, are NDVI values (1990-2013), Urban/Cropland/Forest pixels (2001-2014), and malaria indica-
tors (2000-2014). Other types of dams include those for hydroelectricity, flood control, drinking water, and unspecified purposes.
Wet and dry season NDVI represent the value obtained by subtracting the mean NDVI of the first six weeks from the maximum
NDVI reached during each season.
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Table 2: Summary statistics of time-invariant variables. [back]

Mean Std.Dev Min Max

Mother’s characteristics
Proportion of mothers who lived in the same home 0.065 0.247 0.0 1.0
Number of years since moving homes 17.263 8.824 0.0 49.0
Proportion of children born in another location 0.233 0.423 0.0 1.0
Mother’s education level (factor 0-3) 0.965 0.987 0.0 3.0
Mother’s height (cm) 151.795 6.158 80.0 239.9

Household characteristics
Wealth index (factor 1-5) 2.717 1.370 1.0 5.0
Proportion of rural households 0.765 0.424 0.0 1.0
Proportion of households with electricity 0.893 0.309 0.0 1.0
Proportion of households with improved drinking water 0.895 0.306 0.0 1.0
Proportion of households with improved sanitation 0.614 0.487 0.0 1.0

Dam characteristics
Proportion of irrigation dams 0.887 0.316 0.0 1.0
Proportion of irrigation dams defined as large 0.594 0.491 0.0 1.0
Proportion of hydroelectric dams 0.068 0.252 0.0 1.0
Proportion of flood control dams 0.005 0.071 0.0 1.0
Proportion of water supply dams 0.018 0.134 0.0 1.0

Geographical characteristics
Flat river gradient 0.317 0.227 0.0 0.9
Moderate river gradient 0.307 0.148 0.0 1.0
High river gradient 0.261 0.194 0.0 0.7
Steep river gradient 0.116 0.178 0.0 0.9
Average elevation (m) 338.206 466.945 4.2 4,725.1
Average land gradient (degree) 53.770 136.915 2.7 1,269.6

Boundaries
Basin area (sq.km) 0.001 0.001 0.0 0.0
District area (sq.km) 5,368.703 4,425.269 74.3 43,851.3
State area (sq.km) 174,848.242 97,708.764 38,966.7 346,474.7

Mother’s education levels: 0 - no education, 1 - primary education, 2 - secondary education, and 3 - higher education. Improved
drinking water includes households using piped, public tap, tube well / borehole, protected well, protected spring, rainwater,
tanker truck, or bottled water. Improved sanitation includes households with flush toilets, pit latrines, or composting toilets.
River gradients bins are defined as: flat gradient - below 5 decimeters per km, moderate gradient - between 5 to 20 decimeters
per km, high gradient - between 20 to 66 decimeters per km, and steep gradient - above 66 decimeters per km.
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Figure 1: Frequency of dam constructed in India from 1900 onward. [back]
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Figure 2: Spatial distribution of irrigation dams across districts. [back]
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(a) Administrative Boundaries (DHS Spatial Data Repository)

(b) River Basin Boundaries (HydroSHEDS Database)

Figure 3: District and river basin boundaries. Bolder lines represents revised State boundaries.
[back]
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Table 3: Relationship between river gradient bins and irrigation dams at the district and basin
level. [back]

Cross-sectional (1989) Panel (1990-2014)

(1) (2) (3) (4)

Moderate gradient -4.280 -4.898∗∗ -0.014 -0.004
(2.607) (1.928) (0.016) (0.005)

High gradient 16.908∗∗∗ 11.841∗∗∗ 0.046∗∗ 0.018∗∗∗

(2.086) (1.649) (0.021) (0.006)
Steep gradient 2.361 -1.080 0.072∗∗ 0.033∗∗∗

(3.321) (2.432) (0.036) (0.011)

F-test for Riv.Grad 24.5 23.2 12.2 15.8
Unit District Basin District Basin
Geographic controls No No Yes Yes
Riv.Grad trend No No Yes Yes
Household controls No No Yes Yes
Non-irrigation dams No No Yes Yes
Observations 13,244 13,235 1,259,055 1,257,290

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard
errors are clustered at the unit level (District for columns 1 and 3, River basin
for columns 2 and 4). The reference river gradient bin ‘Low gradient’ is omit-
ted. Cross-sectional models (Column 1 and 2) include state and year fixed effects.
Panel models include district (column 3) or basin (column 4) and year fixed effects.
Geographical controls include: area of region, three average elevations bins, two
average land gradient bins, and the total area of rivers within each region. Each
of these variables is interacted with year dummies. Household controls include:
wealth index, rural residence status, access to improved sanitation and drinking
facilities, mother’s height, mother’s education level, mother’s age, and child’s sex.
Non-irrigation dams are the number of dams in the region built for purposes other
than irrigation (e.g., hydroelectricity, flood control, drinking water, or unspecified).
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Table 4: Impacts of irrigation dams on early childhood mortality incidences at the river basin
level. [back]

Neonatal Post-neonatal Child

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Irrigation dams in basin 0.0008∗∗∗ 0.0026∗∗∗ 0.0004∗∗∗ 0.0003 0.0004 0.0004
(0.0003) (0.0010) (0.0002) (0.0005) (0.0002) (0.0007)

Large irrigation dams upstream -0.0034∗∗∗ -0.0004 0.0006 0.0040 0.0004 0.0005
(0.0012) (0.0052) (0.0007) (0.0028) (0.0009) (0.0031)

F-test for Riv.Grad 15.8 15.8 15.8
SW F-statistic 12.0 12.0 12.0
Fixed effects Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Riv.Grad trend Yes Yes Yes Yes Yes Yes
Household controls Yes Yes Yes Yes Yes Yes
Non-irrigation dams Yes Yes Yes Yes Yes Yes
Dep. var. mean 0.034 0.034 0.011 0.011 0.012 0.012
Observations 1,257,290 1,257,290 1,257,290 1,257,290 1,257,290 1,257,290

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the river basin level.
F-test for Riv. Grad tests the strength of the instrument for irrigation dams constructed in a river basin. SW F-statistics
represents the Sanderson-Windmeijer Multivariate F-test statistic, which is a diagnostic tool for models with multiple en-
dogenous variables. Geographical controls include: area of region, three average elevations bins, two average land gradient
bins, and the total area of rivers within each region. Each of these variables is interacted with year dummies. Household
controls include: wealth index, rural residence status, access to improved sanitation and drinking facilities, mother’s height,
mother’s education level, mother’s age, and child’s sex. Non-irrigation dams are the number of dams in the region built for
purposes other than irrigation (e.g., hydroelectricity, flood control, drinking water, or unspecified).
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Table 5: Impacts of irrigation dam on land cover change and agricultural productivity (proxied
using NDVI) at the river basin level estimated using instrumental variables. [back]

Land cover changes (%) log(NDVI)

(1) (2) (3) (4) (5)
Cropland Forest Urban Wet season Dry season

Irrigation dams in basin 0.045∗∗∗ -0.037∗∗∗ -0.006∗ 0.009 0.258∗∗∗

(0.014) (0.011) (0.003) (0.012) (0.044)
Large irrigation dams upstream 0.078∗∗∗ -0.052∗∗∗ -0.017∗∗ -0.007 0.122

(0.021) (0.017) (0.008) (0.036) (0.132)

F-test for Riv.Grad 19.5 19.5 19.5 22.5 22.3
Fixed effects Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes
Riv.Grad trend Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
Non-irrigation dams Yes Yes Yes Yes Yes
Observations 15,939 15,939 15,939 28,487 28,481

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the river
basin level. Wet and dry season NDVI represent the value obtained by subtracting the mean NDVI of the first
six weeks from the maximum NDVI reached during each season. F-test for Riv. Grad tests the strength of
the instrument for irrigation dams constructed in a river basin. Geographical controls include: area of region,
three average elevations bins, two average land gradient bins, and the total area of rivers within each region.
Each of these variables is interacted with year dummies. Climate controls include average rainfall and temper-
ature and its squared term. Non-irrigation dams are the number of dams in the region built for purposes other
than irrigation (e.g., hydroelectricity, flood control, drinking water, or unspecified).
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Table 6: Impacts of irrigation dam on malaria indicators at the river basin level estimated
using instrumental variables. [back]

Parasite rate Incidence rate

(1) (2)

Irrigation dams in basin 0.0030∗∗∗ 0.0073∗∗∗

(0.0010) (0.0019)
Large irrigation dams upstream 0.0045∗∗∗ 0.0104∗∗∗

(0.0016) (0.0035)

F-test for Riv.Grad 28.7 28.7
Fixed effects Yes Yes
Geographic controls Yes Yes
Riv.Grad trend Yes Yes
Climate controls Yes Yes
Non-irrigation dams Yes Yes
Dep. var. mean 0.004 0.008
Observations 17,745 17,745

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Stan-
dard errors are clustered at the river basin level. F-test for Riv. Grad tests
the strength of the instrument for irrigation dams constructed in a river basin.
Geographical controls include: area of region, three average elevations bins,
two average land gradient bins, and the total area of rivers within each region.
Each of these variables is interacted with year dummies. Climate controls in-
clude average rainfall and temperature and its squared term. Non-irrigation
dams are the number of dams in the region built for purposes other than ir-
rigation (e.g., hydroelectricity, flood control, drinking water, or unspecified).
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Table 7: Impacts of irrigation dam on chemical fertilizer application and water quality mea-
sures. [back]

Fertilizer application (tons) Water content (mg/L)

(1) (2) (3) (4) (5) (6)
Nitrogen Phosphorus Potassium Nitrate DO BOD

Irrigation dams in basin 1389.827∗∗ 611.249∗∗ -137.216 0.065∗∗∗ -0.008∗ -0.071
(606.557) (294.376) (266.274) (0.014) (0.005) (0.049)

Large irrigation dams upstream -309.791∗ -121.612 161.769 -0.001 -0.006 0.078
(184.465) (141.523) (143.742) (0.026) (0.009) (0.092)

F-test for Riv.Grad 21.3 21.3 21.3
Fixed effects Yes Yes Yes Yes* Yes* Yes*
Geographic controls Yes Yes Yes Yes Yes Yes
Riv.Grad trend Yes Yes Yes No No No
Climate controls Yes Yes Yes No No No
Non-irrigation dams Yes Yes Yes Yes Yes Yes
Observations 20,325 20,325 20,325 5,290 5,775 5,765

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Note: due to data limitations, water quality out-
comes (columns 4, 5, and 6) are estimated using OLS with State and Year fixed effects. Standard errors are clustered
at the district level. F-test for Riv. Grad tests the strength of the instrument for irrigation dams constructed in a river
basin. Geographical controls include: area of region, three average elevations bins, two average land gradient bins, and
the total area of rivers within each region. Each of these variables is interacted with year dummies. Climate controls in-
clude average rainfall and temperature and its squared term. Non-irrigation dams are the number of dams in the region
built for purposes other than irrigation (e.g., hydroelectricity, flood control, drinking water, or unspecified).
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Table 8: Impacts of whether children’s first trimester coincide with the district’s sowing period
across districts with varying nitrogen fertilizer application intensity and irrigation dam intensity.
[back]

Neonatal mortality incidence

(1) (2) (3) (4)
Wet Season Wet Season Dry Season Dry Season

Sowing period 0.0004 0.0004 -0.0039∗∗∗ -0.0039∗∗∗

(0.0006) (0.0006) (0.0008) (0.0008)
Sowing period × Moderate dam 0.0019∗ 0.0017 0.0044∗∗∗ 0.0045∗∗∗

(0.0011) (0.0011) (0.0015) (0.0015)
Sowing period × High dam 0.0020∗∗ 0.0018∗ 0.0050∗ 0.0053∗

(0.0010) (0.0010) (0.0030) (0.0030)
Constant 0.0342∗∗∗ 0.0466 0.0349∗∗∗ 0.0474

(0.0001) (0.0366) (0.0001) (0.0367)

Fixed effects Yes Yes Yes Yes
Controls No Yes No Yes
Observations 1,217,373 1,217,373 1,217,373 1,217,373

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the
district level. The omitted interaction is the low intensity of nitrogen fertilizer (columns 1 and 2) and low
intensity of irrigation dams (columns 3 and 4). Fixed effects indicate district and year fixed effects. Con-
trols include variables for household wealth index, rural residence, mother’s height, mother’s age, mother’s
education, average rainfall and temperature (with its squared terms).
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Appendix A: Supplementary Results

Figure A1: Trends in dam construction in India compared to the rest of it South Asian
neighbors. [back]

Figure A2: Location of the NFHS household clusters across India. Survey includes more than
58,000 household clusters with each cluster having roughly 20 households. [back]
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Figure A3: Frequency of dams in India by types. [back]

Figure A4: Distribution of irrigation dams, constructed from 1990-2014, across dam height.
Dotted red line indicates the 15m cutoff used to designate large irrigation dams. [back]
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Figure A5: River network in India. Data is from the HydroRIVER database. Smaller rivers
have been omitted for clarity. [back]

Figure A6: Central Pollution Control Board water quality monitoring sites across India. [back]
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Figure A7: Likelihood of irrigation dam construction across different river gradient bins.
[back]

Figure A8: Graphical illustration of the seasonality in NDVI in the Etawah district (Uttar
Predesh). Blue dashed line and green shade indicates the raw means and the 95% confidence
interval. Red point indicates the predicted NDVI using the flexible trigonometric polynomial.
The sowing period, where the predicted NDVI is the lowest during each season, is June for the
wet season and December for the dry season. [back]
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Table A1: Balance test between children whose first trimester did not coincide with the district
sowing period (low-risk children) and children whose first trimester did coincide with the district
sowing period (high-risk children). [back]

Low-risk children High-risk children

Mean Sd Mean Sd SMD

Neonatal mortality 0.034 0.182 0.035 0.184 -0.004
Wealth index 2.511 1.323 2.428 1.314 0.063
Rural households 0.807 0.395 0.816 0.387 -0.024
Mother’s height 151.505 6.102 151.179 6.096 0.053
Mother’s age 37.611 6.995 37.357 6.910 0.037
Mother’s education 0.815 0.954 0.794 0.955 0.023
Irrigation dams 7.208 13.120 4.926 11.171 0.187
Large irrigation dams 4.150 7.802 2.892 6.693 0.173
Non-irrigation dams 0.665 1.632 0.484 1.422 0.119
Nitrogen 25251.599 22656.825 27188.248 23103.930 -0.085
Phosphorus 10143.997 10275.967 9906.799 9823.840 0.024
Potassium 3543.028 5873.908 3632.150 5693.552 -0.015

Standardized mean differences (SMD) < 0.1 indicates well-balanced, < 0.2 indicates moderate
imbalanced, and ≥ 0.2 indicates highly imbalanced covariates.

Figure A9: Pre-trends in neonatal mortality across states with high and low state-shares of
irrigation dams. No significant pre-trend is also observed for post-neonatal and child mortality
(provided upon request). [back]
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Table A2: Impacts of irrigation dams on early childhood mortality at the river basin level
estimated using instrumental variables for river basins with and without an upstream basin.
[back]

Neonatal Post-neonatal Child

(1) (2) (3) (4) (5) (6)
No Upstream Both No Upstream Both No Upstream Both

Irrigation dams in basin 0.0025∗∗ 0.0039 0.0000 0.0005 0.0006 -0.0004
(0.0010) (0.0029) (0.0005) (0.0016) (0.0007) (0.0018)

Large irrigation dams upstream -0.0083 0.0023 0.0011
(0.0055) (0.0032) (0.0032)

F-test for Riv.Grad 13.6 6.9 13.6 6.9 13.6 6.9
SW F-statistic 13.6 3.2 13.6 3.2 13.6 3.2
Fixed effects Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Riv.Grad trend Yes Yes Yes Yes Yes Yes
Household controls Yes Yes Yes Yes Yes Yes
Non-irrigation dams Yes Yes Yes Yes Yes Yes
Dep. var. mean 0.034 0.036 0.011 0.011 0.012 0.013
Observations 823,768 433,522 823,768 433,522 823,768 433,522

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the river basin level. F-
test for Riv. Grad tests the strength of the instrument for irrigation dams constructed in a river basin. SW F-statistics represents
the Sanderson-Windmeijer Multivariate F-test statistic, which is a diagnostic tool for models with multiple endogenous variables.
Geographical controls include: area of region, three average elevations bins, two average land gradient bins, and the total area of
rivers within each region. Each of these variables is interacted with year dummies. Household controls include: wealth index, rural
residence status, access to improved sanitation and drinking facilities, mother’s height, mother’s education level, mother’s age, and
child’s sex. Non-irrigation dams are the number of dams in the region built for purposes other than irrigation (e.g., hydroelectricity,
flood control, drinking water, or unspecified).

Table A3: Impacts of irrigation dams on early childhood mortality at the river basin level es-
timated using instrumental variables for household clusters that do not overlap multiple basins.
[back]

Neonatal Post-neonatal Child

(1) (2) (3)

Irrigation dams in basin 0.0029∗∗ 0.0004 0.0013∗

(0.0012) (0.0005) (0.0007)
Large irrigation dams upstream 0.0052 0.0021 -0.0007

(0.0059) (0.0032) (0.0032)

F-test for Riv.Grad 14.1 14.1 14.1
SW F-statistic 10.7 10.7 10.7
Fixed effects Yes Yes Yes
Geographic controls Yes Yes Yes
Riv.Grad trend Yes Yes Yes
Household controls Yes Yes Yes
Non-irrigation dams Yes Yes Yes
Dep. var. mean 0.034 0.010 0.012
Observations 721,854 721,854 721,854

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard er-
rors are clustered at the river basin level. F-test for Riv. Grad tests the strength of
the instrument for irrigation dams constructed in a river basin. SW F-statistics rep-
resents the Sanderson-Windmeijer Multivariate F-test statistic, which is a diagnostic
tool for models with multiple endogenous variables. Geographical controls include:
area of region, three average elevations bins, two average land gradient bins, and the
total area of rivers within each region. Each of these variables is interacted with year
dummies. Household controls include: wealth index, rural residence status, access
to improved sanitation and drinking facilities, mother’s height, mother’s education
level, mother’s age, and child’s sex. Non-irrigation dams are the number of dams in
the region built for purposes other than irrigation (e.g., hydroelectricity, flood con-
trol, drinking water, or unspecified).
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Table A4: Impacts of irrigation dams on early childhood mortality using district boundaries.
[back]

Neonatal Post-neonatal Child

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Irrigation dams in basin 0.0001 0.0012 0.0001 -0.0002 0.0003∗∗∗ 0.0008
(0.0002) (0.0010) (0.0001) (0.0006) (0.0001) (0.0007)

Large irrigation dams upstream 0.0001 -0.0000 0.0001∗ 0.0002 0.0002∗∗∗ 0.0001
(0.0001) (0.0004) (0.0001) (0.0002) (0.0001) (0.0003)

F-test for Riv.Grad 15.0 15.0 15.0
Fixed effects Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes Yes Yes
Riv.Grad trend Yes Yes Yes Yes Yes Yes
Household controls Yes Yes Yes Yes Yes Yes
Non-irrigation dams Yes Yes Yes Yes Yes Yes
Dep. var. mean 0.034 0.034 0.011 0.011 0.012 0.012
Observations 1,259,055 1,259,055 1,259,055 1,259,055 1,259,055 1,259,055

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the district level.
F-test for Riv. Grad tests the strength of the instrument for irrigation dams constructed in a river basin. SW F-statistics
represents the Sanderson-Windmeijer Multivariate F-test statistic, which is a diagnostic tool for models with multiple en-
dogenous variables. Geographical controls include: area of region, three average elevations bins, two average land gradient
bins, and the total area of rivers within each region. Each of these variables is interacted with year dummies. House-
hold controls include: wealth index, rural residence status, access to improved sanitation and drinking facilities, mother’s
height, mother’s education level, mother’s age, and child’s sex. Non-irrigation dams are the number of dams in the region
built for purposes other than irrigation (e.g., hydroelectricity, flood control, drinking water, or unspecified).

Table A5: Impacts of irrigation dams on agricultural productivity at the district level estimated
using instrumental variables. [back]

Wet season Dry season

(1) (2) (3) (4)
Yields (kg/ha) log(NDVI) Yields (kg/ha) log(NDVI)

Irrigation dams in basin -132.836 -0.017∗ 137.832∗∗∗ 0.188∗∗∗

(81.983) (0.010) (45.413) (0.038)
Large irrigation dams upstream -68.216∗∗ 0.008∗∗ -88.155∗∗∗ -0.047∗∗∗

(33.433) (0.004) (17.933) (0.014)

F-test for Riv.Grad 22.9 26.6 22.9 26.6
Fixed effects Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes
Riv.Grad trend Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes
Non-irrigation dams Yes Yes Yes Yes
Observations 10,254 10,920 10,254 10,920

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the dis-
trict level. F-test for Riv. Grad tests the strength of the instrument for irrigation dams constructed in a river
basin. Geographical controls include: area of region, three average elevations bins, two average land gradient
bins, and the total area of rivers within each region. Each of these variables is interacted with year dummies.
Climate controls include the average of rainfall and temperature and its squared term. Non-irrigation dams are
the number of dams in the region built for purposes other than irrigation (e.g., hydroelectricity, flood control,
drinking water, or unspecified).
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Figure A10: Average flow of rivers constructed within 200 meters of irrigation dams across
years. Solid line represents the smoothed trend line with the shade representing 95% confidence
interval. [back]

Table A6: Impacts of whether children’s first trimester coincide with the district’s sowing
period across districts with varying nitrogen fertilizer application intensity and irrigation dam
intensity. [back]

Second trimester Third trimester

(1) (2) (3) (4)
Wet Season Dry Season Wet Season Dry Season

Sowing period -0.0004 0.0022∗∗ -0.0027∗∗∗ -0.0000
(0.0007) (0.0009) (0.0007) (0.0008)

Sowing period × Moderate dam -0.0001 -0.0048∗∗∗ 0.0010 0.0005
(0.0010) (0.0016) (0.0011) (0.0017)

Sowing period × High dam -0.0013 -0.0024 0.0021∗∗ 0.0013
(0.0010) (0.0023) (0.0010) (0.0022)

Constant 0.0464 0.0456 0.0461 0.0466
(0.0366) (0.0369) (0.0366) (0.0366)

Fixed effects Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 1,217,373 1,217,373 1,217,373 1,217,373

Asterisks indicates significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. Standard errors are clustered at the
district level. The omitted interaction is the low intensity of nitrogen fertilizer (columns 1 and 2) and low
intensity of irrigation dams (columns 3 and 4). Fixed effects indicate district and year fixed effects. Con-
trols include variables for household wealth index, rural residence, mother’s height, mother’s age, mother’s
education, average rainfall and temperature (with its squared terms).
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